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ABSTRACT: In this paper, we used Hamiltonian for nonlinear oscillators with discontinuities. The maximal
relative error for the frequency obtained by new variational method compared with the exact solution
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1. INTRODUCTION
There are many approaches for approximating solutions to
nonlinear oscillatory systems. The most widely studied
approximation methods are the perturbation methods [24].
The simplest and perhaps one of the most useful of these
approximation methods is the Lindstedt–Poincare´
perturbation method, whereby the solution is analytically
expanded in the power series of a small parameter [20]. To
overcome this limitation, many new perturbative techniques
have been developed. Modified Lindstedt–Poincare´
techniques [21–23], the homotopy perturbation method [24–
30] or linear delta expansion [31–33] are only some
examples of them. A recent  detailed review of asymptotic
methods for strongly nonlinear oscillators can be found in
[16]. The harmonic balance method is another procedure for
determining analytical approximations to the periodic
solutions of differential equations by using a truncated
Fourier series representation [17-20,34–42]. This method
can be applied to nonlinear oscillatory systems where the
nonlinear terms are not small and no perturbation parameter
is required. In this research, we used new variational method
using Hamiltonian [43] for nonlinear oscillators with
discontinuities. We observe from the results that this method
is very simple, easy to apply, and gives a very good accuracy
even with the first-order approximation and simplest trial
functions. Comparison made with other known results show
that te method provides a mathematical tool to the
determination of limit cycles of more complex nonlinear
oscillators.

Suppose nonlinear oscillator
( ) 0,u f u                  (1)

with initial conditions
(0) and (0) 0.u A u 

It is easy to establish a variational principle for equation (1),
which reads [1]
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where T is period of the oscillator, ( ).
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In our previous study [1], variational approach to nonlinear
oscillators was suggested, where the trial-function is chosen
as

cos ,u A t                                      (3)

where  is frequency. Substituting Eq. (3) into Eq. (2)
results in
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According to Ref. [1], the frequency–amplitude relationship
can be obtained from the following equation
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Explanation of Eq. (5) was given in Ref. [2]. This variational
method for nonlinear oscillators have been used by many
authors [3–6]. In this Letter we will develop a new
variational method for nonlinear oscillators using
Hamiltonian.
2. Hamiltonian

In the functional (2), 21

2
u  is kinetic energy and F (u)

potential energy, so the functional (2) is the least Lagrangian
action, from which we can immediately obtain its
Hamiltonian, which reads
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Equation (6) implies that the total energy keeps unchanged
during the oscillation. In our previous work [7], u = A cosωt
was used as a trial function and it was substituted to Eq. (7)
to obtain a residual
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Locating at some a special point, i.e., ωt = π/4, and setting
R(t =π/4ω ) = 0, we can obtain an approximate frequency–
amplitude relationship of the studied nonlinear oscillator.
Such treatment is much simple and has been widely used by
engineers [8–15]. The accuracy of such location method,
however, strongly depends upon the chosen location point.
To overcome the shortcoming of the energy balance method,
in this Letter we suggest a new approach based on
Hamiltonian.
From Eq. (6), we have
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Introducing a new function, °( )H u  defined as
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Equation (9) is, then, equivalent to the following one:
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From Eq. (13) we can obtain approximate frequency–
amplitude relationship of a nonlinear oscillator.
3. Applications
In order to assess the advantages and the accuracy of new

method, we will consider the following examples:
Example 1. Consider a nonlinear oscillator with
discontinuity in the form

2

0 0.u u u u                        (14)

With initial condition
(0) and (0) 0.u A u 

It is easy to establish a variational principle for equation
(14), which reads [1]

2/4 1 12 2 30( )
0 2 2 3

2/2 1 12 2 30 ,
/4 2 2 3

T
J u u u u dt

T
u u u dt

T







   

   

  
 
  
  
 
  

(15)

and °( )H u can be written in the form
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Assume that the solution can be   expressed as u = A cosωt,
substitute in (16), we get
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We get the following frequency-amplitude relation
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a) 0 1, 1, 1A   
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b)

c) 0 1, 1, 10A   

d) 0 1, 1, 100A   

e) 0 1, 1, 1000A   
Fig. 1

Fig.1 Comparison of the approximate solution

cos ,u A t where  is defined by equation  (22). Dashed

line approximate solution; continuous line: Ren-He  method (RHM,
[45])

Same formula has been derived by using homotopy
perturbation method [44]. In case 2

0 0, 1,   in equation
(14) becomes 0,u u u   which has exact frequency

0.9147 ,ext A  see [46], while our approximate
frequency reads 0.9310 ,A  the accuracy is 1.78%,
which can be considered an acceptable value if the
simplicity of the method is taken into account.
Example 2. Consider the following nonlinear oscillator in
the form

3 0.u u u u                 (23)
with initial condition (0) and (0) 0.u A u 
It is easy to establish a variational principle for equation
(23), which reads [1]
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Assume that the solution can be   expressed as u = A cosωt,
substitute in (25), we get
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We get the following frequency-amplitude relation
2

3 8
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Same result was obtained [19], by using different technique.
In this case choose 0, 1,   we obtained the same

result [46].

4. CONCLUSION
In this research, we used new variational method using
Hamiltonian for nonlinear oscillators with discontinuities.
We observe from the results that this method is very simple,
easy to apply, and gives a very good accuracy even with the
first-order approximation and simplest trial functions. The
discontinuous function will not affect the effectiveness and
convenience of the method and solutions are valid for  the
whole domain.
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